牛津仪器集团成员
扩展

用于聚合物科研的原子力显微镜

Modulus map of a polymer blend

聚合物在日常生活中无处不在,并且是许多材料研究的对象。聚合物有多种特性,而原子力显微镜则是进行多层面研究的一种理想仪器。除了对聚合物膜的形貌进行准确地测量之外,Asylum Research 生产的多种原子力显微镜还可以帮助科研人员对聚合物的各种特性进行研究,从晶粒的分子链排列,到域模量和电导率。

咨询AFM领域的专家

功能

  • 表面形貌和粗糙度测量
  • 量化测量纳米机械特性,包括粘弹性 (AM-FM 和 CR-DART)
  • 快速成像,以观察结晶和融化过程
  • 对样品进行可控的加热和冷却
  • 电学测量,例如:光电导性和电化学压变
  • 对样品周围的气体和湿度进行环境控制
  • 热分析(Ztherm)
  • 内置光刻工具
  • 单分子力谱实验

常见用途

  • 描述聚合物混合物和聚合物复合材料组件的纳米机械特性(模量、粘弹性)
  • 商业包装质量的检测
  • 层厚度和均匀性的测量
  • 材料应变测试
  • 有机电子:有机太阳能电池的光电导性
  • 单链聚合物拉伸
  • 热:熔化和结晶

"Persistence length of poly(vinyl amine): Quantitative image analysis versus single molecule force response," S. Kozhuharov, M. Radiom, P. Maroni, and M. Borkovec, Macromolecules 51, 3632 (2018). https://doi.org/10.1021/acs.macromol.8b00834

"One‐step synthesis and enhanced thermoelectric properties of polymer‐ composite films," W. Shi, S. Qu, H. Chen, Y. Chen, Q. Yao, and L. Chen, Angew. Chem. Int. Ed. 57, 8037 (2018). https://doi.org/10.1002/anie.201802681

"Morphological explanation of tear resistance of EPDM/NR rubber blends," C. Goegelein, H. J. H. Beelen, and M. van Duinc, Soft 13, 4241 (2017). https://doi.org/10.1039/c7sm0264e

"Real-time atomic force microscopy imaging of block copolymer directed self assembly," J. Raybin, J. Ren, X. Chen, R. Gronheid, P. F. Nealey, and S. J. Sibener, Nano Lett. 17, 7717 (2017). https://doi.org/10.1021/acs.nanolett.7b03881

"Stem‐cell clinging by a thread: measure of polymer‐brush lateral deformation," M. K. Gunnewiek, S. N. Ramakrishna, A. Di Luca, G. J. Vancso, L. Moroni, and E. M. Benetti, Adv. Mater. Interfaces 3, 1500456 (2016). https://doi.org/10.1002/admi.201500456

"Elastic and viscoelastic characterization of inhomogeneous polymers by bimodal atomic force microscopy," H. K. Nguyen, M. Ito, and K. Nakajima, Jpn. J. Appl. Phys. 55, 08NB06 (2016). https://doi.org/10.7567/jjap.55.08nb06

"Bimodal poly(ethylene-cb-propylene) comb block copolymers from serial reactors: Synthesis and applications as processability additives and blend compatibilizers," A. H. Tsou, C. R. López-Barrón, P. Jiang, D. J. Crowther, and Y. Zeng, Polymer 104, 72e82 (2016). http://dx.doi.org/10.1016/j.polymer.2016.09.088

"Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy," P. C. Nalam, N. N. Gosvami, M. A. Caporizzo, R. J. Composto, and R. W. Carpick, Soft 11, 8165 (2015). https://doi.org/10.1039/c5sm01143d

"Thermoplastic elastomers of alloocimene and isobutylene triblock copolymers," J. Roh, D. Roy, W. Lee, A. Gergely, J. Puskas, and C. Roland, Polymer 56, 280 (2015). https://doi.org/10.1016/j.polymer.2014.11.015

"Fast nanomechanical of soft ," E. T. Herruzo, A. P. Perrino, and R. Garcia, Nat. Commun. 5, 3126 (2014). https://doi.org/10.1038/ncomms4126

"Measuring the loss tangent of polymer materials with atomic force microscopy based methods," D. G. Yablon, J. Grabowski, and I. Chakraborty, Meas. Sci. Technol. 25, 055402 (2014). https://doi.org/10.1088/0957-0233/25/5/055402

"Resolving sub-molecular binding and electrical switching mechanisms of single proteins at electroactive conducting polymers," A. Gelmi, M. J. Higgins, and G. G. Wallace, Small 9, 393 (2013). https://doi.org/10.1002/smll.201201686

“Improved electrical and flow properties of conductive polyolefin blends: Modification of poly(ethylene vinyl acetate) copolymer/carbon black with ethylene–propylene copolymer,” T. Gkourmpis, C. Svanberg, S. K. Kaliappan, W. Schaffer, M. Obadal, G. Kandioller, and D. Tranchida, Eur. Polym. J. 49, 1975 (2013). https://doi.org/10.1016/j.eurpolymj.2013.03.003

"Nano-scale dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope ()," C. A. Grant, A. Alfouzan, T. Gough, P. C. Twigg, and P. D. Coates, Micron 44, 174 (2013). https://doi.org/10.1016/j.micron.2012.06.004

"Measuring the interaction between ions, biopolymers and interfaces — one polymer at a time," S. Kienle, T. Pirzer, S. Krysiak, M. Geisler, and T. Hugel, Faraday Discuss. 160, 329 (2013). https://doi.org/10.1039/c2fd20069d

"Poly (acrylamide) films at the solvent-induced glass : Adhesion, tribology, and the influence of crosslinking," A. Li, S. N. Ramakrishna, E. S. Kooij, R. M. Espinosa-Marzal, and N. D. Spencer, Soft 8, 9092 (2012). https://doi.org/10.1039/c2sm26222c

"Signature of hydrophobic hydration in a single polymer," I. T. S. Li and G. C. Walker, Proc. Natl. Acad. Sci. U.S.A./em> 108, 16527 (2011). https://doi.org/10.1073/.1105450108

“-resolution studies of domain switching behavior in nanostructured ferroelectric polymers,” P. Sharma, T. J. Reece, S. Ducharme, and A. Gruverman, Nano Lett. 11, 1970 (2011). https://doi.org/10.1021/nl200221z

"Improved performance of polymer bulk heterojunction solar cells through the reduction of separation via solvent additives," C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, Adv. Mater. 22, E63 (2010). https://doi.org/10.1002/adma.200903677

"Self-assembling polystyrene-block-poly(ethylene oxide) copolymer coatings: Resistance to protein and cell adhesion," P. A. George, B. C. Donose, and J. J. Cooper-White, Biomaterials 30, 2449 (2009). https://doi.org/10.1016/j.biomaterials.2009.01.012

"Nanoscale –mechanical determination of 'softening transitions' in polymer films," J. Zhou, B. Berry, J. F. Douglas, A. Karim, C. R. Snyder, and C. Soles, 19, 495703 (2008). https://doi.org/10.1088/0957-4484/19/49/495703

"Nanoindentation of shape memory polymer networks," E. Wornyo, K. Gall, F. Yang, and W. P. King, Polymer 48, 3213 (2007). https://doi.org/10.1016/j.polymer.2007.03.029

"Time-resolved electrostatic force microscopy of polymer solar cells," D. C. Coffey and D. S. Ginger, Nat. Mater. 5, 735 (2006). https://doi.org/10.1038/nmat1712

"Functional polymers: scanning force microscopy insights," P. Samorì, M. Surin, V. Palermo, R. Lazzaroni, and P. Leclère, Phys. Chem. Chem. Phys. 8, 3927 (2006). https://doi.org/10.1039/b607502a

"Using force–distance curves to study the glass-to-rubber of amorphous polymers and their elastic–plastic properties as a function of ," B. Cappella, S. K. Kaliappan, and H. Sturm, Macromolecules 38, 1874 (2005). https://doi.org/10.1021/ma040135

沪ICP备17031777号-1 公安机关备案号31010402003473