牛津仪器集团成员
扩展

用于压电材料和铁电体研究的原子力显微镜

piezoresponse force microscopy image taken with an Asylum Research scanning probe microscope

压电响应力显微术(PFM)是一种原子力显微技术,可用于表征许多材料体系功能的机电耦合特性,包括:压电体、铁电体,以及某些生物材料。通过原子力显微镜的探针针尖,对样品进行局部的电刺激,同时测量其~1-100pm / V量级的机械响应。该技术与基础材料研究和应用技术的多个领域有关。在商用PFM技术领域,Asylum Research是公认的优质品牌,因为我们的产品具备各种先进的、有专利权的测量技术和功能,可提供无串扰、高灵敏度的PFM测量。

Now with the Interferometric Displacement Sensor (IDS) Option for the Cypher AFM, d33 measurements are more reproducible and artifact-free.  Interferometric detection directly measures cantilever deflection instead of cantilever angle that is utilized in conventional optical beam detection (OBD). IDS eliminates the artifacts due to electrostatic coupling. Learn how IDS improves PFM measurements by downloading the white paper below.

资讯AFM领域的专家
  • 在一个固定的频率下,或者通过跟踪共振(带有DART或带激励),对样本进行机电响应的成像。
  • 较高的针尖偏置电压可以提高测量的灵敏度:电压最高可达 ±150 V(利用Cypher™ 和MFP‑3D Infinity™ ),或者±220 V(利用MFP‑3D Origin™和 Origin+)
  • 内置的光刻工具,可用于书写结构畴和复杂图案。利用导入位图的灰度级,可以不断改变针尖的偏压。
  • 矢量PFM,可用于重建真实空间的极化方xian
  • 转换光谱,以产生压电响应振幅“蝴蝶”回线和相位“滞后”回路
  • 兼容各种环境台和配件,可使用加热和冷却功能,或将样品置于有湿度、气体灌注或应用磁场中

压电材料

  • 微机电系统(MEMS)
  • 传感器和致动器
  • 能源的储存和采集
  • 射频滤波器和开关
  • 声纳
  • 平衡和频率标准
  • 巨大的k电介质
  • 电容

铁电材料

  • 畴工程
  • 非易失性存储器
  • 数据存储设备
  • 畴能量学和动力

基础材料科学

  • 和临界现象
  • 尺寸效应
  • 成核动力学
  • 多铁性材料
  • 铁电聚合物
  • 液晶
  • 复合材料
  • 弛豫铁电体

生物-电机学

  • 心脏
  • 听觉
  • 细胞信号传导
  • 结构电机学
  • 生物传感器

"Metal-free three-dimensional perovskite ferroelectrics," H.-Y. Ye, Y.-Y. Tang, P.-F. Li, W.-Q. Liao, J.-X. Gao, X.-N. Hua, H. Cai, P.-P. Shi, Y.-M. You, and R.-G. Xiong, 361, 151 (2018). https://doi.org/10.1126/.aas9330

"Higher-eigenmode piezoresponse force microscopy: a path towards increased sensitivity and the elimination of electrostatic artifacts," G. A. MacDonald, F. W. DelRio, and J. P. Killgore, Nano Futures 2, 015005 (2018). https://doi.org/10.1088/2399-1984/aab2bc

"Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects," T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic, B. Jancar, G. Tavcar, M. Makarovic, J. Walker, B. Malic, and D. Damjanovic, Nat. Mater. 16, 322 (2017). https://doi.org/10.1038/nmat4799

"Nanoscale domain imaging and local piezoelectric coefficient d33 studies of single piezoelectric polymeric nanofibers," X. Liu, M. Deng, and X. Wang, Mater. Lett. 189, 66 (2017). https://doi.org/10.1016/j.matlet.2016.11.044

"Enhancing ion migration in grain boundaries of hybrid organic–inorganic perovskites by chlorine," B. Yang, C. C. Brown, J. Huang, L. Collins, X. Sang, R. R. Unocic, S. Jesse, S. V. Kalinin, A. Belianinov, J. Jakowski, D. B. Geohegan, B. G. Sumpter, K. Xiao, and O. S. Ovchinnikova, Adv. Funct. Mater. 27, 1700749 (2017). https://doi.org/10.1002/adfm.201700749

"Multiferroic and magnetoelectric properties of BiFeO3/Bi4Ti3O12 bilayer composite films," J. Chen, Z. Tang, Y. Bai, and S. Zhao, J. Alloys Compd. 675, 257 (2016). https://doi.org/10.1016/j.jallcom.2016.03.119

"Ferroelastic fingerprints in methylammonium lead iodide perovskite," I. M. Hermes, S. A. Bretschneider, V. W. Bergmann, D. Li, A. Klasen, J. Mars, W. Tremel, F. Laquai, H.-J. Butt, M. Mezger, R. Berger, B. J. Rodriguez, and S. A. L. Weber, J. Phys. Chem. C 120, 5724 (2016). https://doi.org/10.1021/acs.jpcc.5b11469

"Room- ferroelectricity in CuInP2S6 ultrathin flakes," F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Nat. Commun. 7, 12357 (2016). https://doi.org/ 10.1038/ncomms12357

"Controlling domain wall motion in ferroelectric thin films," L. J. McGilly, P. Yudin, L. Feigl, A. K. Tagantsev, and N. Setter, Nat. Nanotechnol. 10, 145 (2015). https://doi.org/10.1038/nnano.2014.320

"Ferroelectric polarization reversal via successive ferroelastic transitions," R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, Nat. Mater. 14, 79 (2015). https://doi.org/10.1038/nmat4119

"Deterministic switching of ferromagnetism at room using an ," J. T. Heron, J. L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J. D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D. C. Ralph, D. G. Schlom, J. Iñiguez, B. D. Huey, and R. Ramesh, 516, 370 (2014). https://doi.org/10.1038/14004

"Tuning of the depolarization and nanodomain structure in ferroelectric films," C. Lichtensteiger, S. Fernandez-Pena, C. Weymann, P. Zubko, and J.-M. Triscone, Nano Lett. 14, 4205 (2014). https://doi.org/10.1021/nl404734z

"Non-volatile memory based on the ferroelectric photovoltaic ," R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, Nat. Commun. 4, 1990 (2013). https://doi.org/10.1038/ncomms2990

"Ferroelectric---enhanced electroresistance in metal/ferroelectric/ tunnel junctions," Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, Nat. Mater. 12, 617 (2013). https://doi.org/10.1038/nmat3649

"Ferroelectric order in individual nanometre-scale crystals," M. J. Polking, M.-G. Han, A. Yourdkhani, V. Petkov, C. F. Kisielowski, V. V. Volkov, Y. Zhu, G. Caruntu, A. P. Alivisatos, and R. Ramesh, Nat. Mater. 11, 700 (2012). https://doi.org/10.1038/nmat3371

"Tunnel electroresistance in junctions with ultrathin ferroelectric Pb(Zr0.2Ti0.8)O3 barriers," D. Pantel, H. Lu, S. Goetze, P. Werner, D. J. Kim, A. Gruverman, D. Hesse, and M. Alexe, Appl. Phys. Lett. 100, 232902 (2012). https://doi.org/10.1063/1.4726120

"Structural and piezoelectric characteristics of BNT–BT0.05 thin films processed by sol–gel technique," M. Cernea, L. Trupina, C. Dragoi, B. S. Vasile, and R. Trusca, J. Alloys Compd. 515, 166 (2012). https://doi.org/10.1016/j.jallcom.2011.11.129

"Solid-state memories based on ferroelectric tunnel junctions," A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, Nat. Nanotechnol. 7, 101 (2011). https://doi.org/10.1038/nnano.2011.213

"-resolution studies of domain switching behavior in nanostructured ferroelectric polymers," P. Sharma, T.J. Reece, S. Ducharme, and A. Gruverman, Nano Lett. 11, 1970 (2011). https://doi.org/10.1021/nl200221z

"Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates," X. Feng, B. D. Yang, Y. Liu, Y. Wang, C. Dagdeviren, Z. Liu, A. Carlson, J. Li, Y. Huang, and J. A. Rogers, ACS Nano 5, 3326 (2011). https://doi.org/10.1021/nn200477q

"Nanoscale switching characteristics of nearly tetragonal BiFeO3 films," D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S. V. Kalinin, A. P. Baddorf, and A. Gupta, Nano Lett. 10, 2555 (2010). https://doi.org/10.1021/nl101187a

"Enhanced multiferroic properties and domain structure of La-doped BiFeO3 films," F. Yan, T. J. Zhu, M. O. Lai, and L. Lu, Scr. Mater. 63, 780 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.013

"Tunneling electroresistance in ferroelectric tunnel junctions at the nanoscale," A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Y. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom, and E. Y. Tsymbal, Nano Lett. 9, 3539 (2009). https://doi.org/10.1021/nl901754t

"Dual- resonance-tracking atomic force microscopy," B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, 18, 475504 (2007). https://doi.org/10.1088/0957-4484/18/47/475504

"Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment," J. Song, J. Zhou, and Z. L. Wang, Nano Lett. 6, 1656 (2006). https://doi.org/ 10.1021/nl060820v

沪ICP备17031777号-1 公安机关备案号31010402003473