牛津仪器集团成员
扩展

用于石墨烯和二维材料性能表征的AFM

Graphene flakes imaged on boron nitride using atomic force microscopy

Novoselov 和Geim 于2004年发表了一份关于“利用单层石墨制造晶体管”的研究报告。一夜之间,这篇报告揭开了该领域研究的序幕。相关的实验证明,这个单一的、独立的碳原子平面具有许多独特、理想的特性:它具有高比表面积,优良的电导和热导性,以及优越的机械强度。是一种理想的双表面材料,没有中间层。它拥有已知非常高的室温载流子迁移率,其导热率是硅的25倍,杨氏模量约为1 TPa,而且其断裂强度接近极限。因此,在以下领域,它具有很大的技术突破潜力:下一代电子工业(量子、电子学)、能源采集和储存(光电、燃料电池、超级电容器)、纳米机电(NEMS)器件和谐振器,以及电化学传感器和芯片实验室生物传感器等。此外,该领域的研究还激发了人们对其他材料的兴趣,例如:MoS2和氮化硼。

原子力显微镜是该研究领域中的一项关键性技术。利用它的高分辨率(亚埃级),我们可以轻松地辨别某个基质上的单原子层,并且可以对其特性进行表征,例如:形貌、粗糙度和均匀性。此外,成像技术需要将探针与材料表面进行物理接触,因此在测量形貌的同时,还能够表征电学和机械性能,以纳米级的侧向精度,对材料性能(导电率、介电常数、刚度、损耗、粘弹性和摩擦反应)进行成像。在测量过程中,将探针的针尖贴近材料的表面,还可以测量长程的电学性能,例如:静电电荷、表面电势和磁场等。

咨询AFM领域的专家

计量学

  • 膜的厚度

  • 粗糙度、形貌、均匀性

电气性能

  • 导电性和介电常数(sMIM,CAFM)
  • 表面电势(KPFM)
  • 存储电荷(EFM)
  • I-V描述(CAFM)
  • 磁力梯度(MFM)

机械性能

  • 刚度、杨氏模量(力曲线、快速力成像、AM-FM)
  • 弹性模量,损耗模量,损耗角正切(AM-FM,接触共振,损耗角正切成像)
  • 能量损耗(AM-FM、接触共振、损耗角正切成像)

摩擦力性能

  • 摩擦力(LFM)
  • 附着力(力曲线、快速力成像)

热性能

  • 热导率(SThM)
  • 量子、电子学
  • 电子电路组件:晶体管、场发射器、连接器、超级电容。
  • 电阻非易失性存储技术
  • 用于光电、光伏和显示技术的透明电极
  • 能量采集和储存:太阳能电池、燃料电池、电池。
  • 太赫等离子体振荡器
  • 传感器技术:单分子传感器、电化学传感器、生物传感器、芯片实验室设备。
  • 半透膜(生物)分子和离子传输
  • 纳米机械系统和机械谐振器

"Direct growth of crystallinity from water-soluble polymer powders," Q. Chen, Y. Zhong, M. Huang, G. Zhao, Z. Zhen, and H. Zhu, Mater. 5, 035001 (2018). https://doi.org/10.1088/2053-1583/aab729

"Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide," V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, and M. C. Hersam, 554, 500 (2018). https://doi.org/10.1038/25747

"Robust microscale superlubricity under contact enabled by -coated microsphere," S. W. Liu, H. P. Wang, Q. Xu, T. B. Ma, G. Yu, C. Zhang, D. Geng, Z. Yu, S. Zhang, W. Wang, Y. Z. Hu, H. Wang, and J. Luo, Nat. Commun. 8, 14029 (2017). https://doi.org/10.1038/ncomms14029

"Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects," T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic, B. Jancar, G. Tavcar, M. Makarovic, J. Walker, B. Malic, and D. Damjanovic, Nat. Mater. 16, 322 (2017). https://doi.org/10.1038/nmat4799

"A novel approach to decrease friction of ," X. Zeng, Y. Peng, and H. Lang, Carbon 118, 233 (2017). https://doi.org/10.1016/j.carbon.2017.03.042

"Room- ferroelectricity in CuInP2S6 ultrathin flakes," F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Nat. Commun. 7, 12357 (2016). https://doi.org/10.1038/ncomms12357

"Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry," C. R. Ryder, J. D. Wood, S. A. Wells, Y. Yang, D. Jariwala, T. J. Marks, G. C. Schatz, and M. C. Hersam, Nat. Chem. 8, 597 (2016). https://doi.org/10.1038/nchem.2505

"Strain-engineered grown on hexagonal boron nitride by molecular beam epitaxy," A. Summerfield, A. Davies, T. S. Cheng, V. V. Korolkov, Y. J. Cho, C. J. Mellor, C. T. Foxon, A. N. Khlobystov, K. Watanabe, T. Taniguchi, L. Eaves, S. V. Novikov, and P. H. Beton, Sci. Rep. 6, 22440 (2016). https://doi.org/10.1038/srep22440

"Large-area epitaxial monolayer MoS2," D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. Lopez Sanchez, Y.-C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, ACS Nano 9, 4611 (2015). https://doi.org/10.1021/acsnano.5b01281

"Planar carbon nanotube- hybrid films for -performance broadband photodetectors," Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, Nat. Commun. 6, 8589 (2015). https://doi.org/10.1038/ncomms9589

"Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2," V. K. Sangwan, D. Jariwala, I. S. Kim, K. S. Chen, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Nat. Nanotechnol. 10, 403 (2015). https://doi.org/10.1038/nnano.2015.56

"Strong oxidation resistance of atomically boron nitride nanosheets," L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, and Y. Chen, ACS Nano 8, 1457 (2014). https://doi.org/10.1021/nn500059s

"Fluorination of enhances friction due to increased corrugation," Q. Li, X.-Z. Liu, S.-P. Kim, V. B. Shenoy, P. E. Sheehan, J. T. Robinson, and R. W. Carpick, Nano Lett. 14, 5212 (2014). https://doi.org/10.1021/nl502147t

"Exploring flatland: of mechanical and electrical properties of , MoS2 and other -dimensional materials," S. Bertolazzi, J. Brivio, A. Radenovic, A. Kis, H. Wilson, L. Prisbrey, E. Minot, A. Tselev, M. Philips, M. Viani, D. Walters, and R. Proksch, Microscopy and Analysis 27, 21 (2013). link to magazine

"Scalable one-step wet-spinning of fibers and yarns from liquid crystalline dispersions of oxide: Towards multifunctional textiles," R. Jalili, S. H. Aboutalebi, D. Esrafilzadeh, R. L. Shepherd, J. Chen, S. Aminorroaya-Yamini, K. Konstantinov, A. I. Minett, J. M. Razal, and G. G. Wallace, Adv. Funct. Mater. 23, 5345 (2013). https://doi.org/10.1002/adfm.201300765

"Friction force microscopy: a simple technique for identifying on rough substrates and mapping the orientation of grains on copper," A. J. Marsden, M. Phillips, and N. R. Wilson, 24, 255704 (2013). https://doi.org/10.1088/0957-4484/24/25/255704

"Near- scanning imaging of conductivity inhomogeneities in CVD ," A. Tselev, N. V. Lavrik, I. Vlassiouk, D. P. Briggs, M. Rutgers, R. Proksch, and S. V. Kalinin, 23, 385706 (2012). https://doi.org/10.1088/0957-4484/23/38/385706

"Stretching and breaking of ultrathin MoS2," S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011). https://doi.org/10.1021/nn203879f

"Grains and grain boundaries in single-layer atomic patchwork quilts," P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, and J. Park, 469, 389 (2011). https://doi.org/10.1038/09718

"Multiply folded ," K. Kim, Z. Lee, B. D. Malone, K. T. Chan, B. Aleman, W. Regan, W. Gannett, M. F. Crommie, M. L. Cohen, and A. Zettl, Phys. Rev. B 83, 245433 (2011). https://doi.org/10.1103/physrevb.83.245433

"Single-layer MoS2 transistors," B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279

"The large-scale production of flakes using magnetically-enhanced arc discharge between carbon electrodes," I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, Carbon 48, 4570 (2010). https://doi.org/10.1016/j.carbon.2010.07.055

"Layer-by-layer transfer of multiple, large area sheets of grown in multilayer stacks on a single SiC wafer," S. Unarunotai, J. C. Koepke, C.-L. Tsai, F. Du, C. E. Chialvo, Y. Murata, R. Haasch, I. Petrov, N. Mason, M. Shim, J. Lyding, and J. A. Rogers, ACS Nano 4, 5591 (2010). https://doi.org/10.1021/nn101896a

"Effective doping of single-layer from underlying SiO2 substrates," Y. Shi, X. Dong, P. Chen, J. Wang, and L.-J. Li, Phys. Rev. B 79, 115402 (2009). https://doi.org/10.1103/physrevb.79.115402

沪ICP备17031777号-1 公安机关备案号31010402003473