牛津仪器集团成员
扩展

用于薄膜和涂层性能表征的原子力显微镜

Atomic force microscopy image of a thin film

薄膜和涂层在多个领域(从食品容器到光伏发电)发挥着关键性的作用。为了满足不同的需求,人们使用各种材料,通过多种加工流程来制造和涂层,包括:沉积、自组装和“溶胶-凝胶”等技术。在表征薄膜和涂层的特性方面,原子力显微镜()具有非常强大的功能,因为它能够提供至关重要的有价值信息。通过优异的空间分辨率,原子力显微镜可以量化三维材料的粗糙度和纹理,并测量纳米级性能,包括电学、磁学和机械性能。由于这些的固有规格(厚度、纹理和尺寸等),我们需要在亚纳米到微米分辨率的情况下对其进行表征。 此外,原子力显微镜能够在这些尺度范围内同时测量材料的功能特性,这对目标应用的工程学研究非常关键。为生长过程的开发、优化和监测提供了关键的信息,并为实现所需的功能提供了合理的设计途径。

咨询AFM领域的专家

计量参数

  • 表面粗糙度
  • 均匀性、多分散性
  • 形貌
  • 粒子分析
  • 膜的厚度

机械性能

  • 刚度、杨氏模量(力曲线、快速力成像、AM-FM、接触共振模式)
  • 弹性模量、损耗模量、粘弹性损耗正切(AM-FM、接触共振、损耗正切成像)
  • 能量耗散(AM-FM、接触共振、损耗正切成像、BE)

摩擦学性能

  • 摩擦 (LFM)
  • 附着力(力曲线、快速力成像)
  • 磨损 (LFM)

电学性能

  • 电导率和介电常数(SMIM, CAFM)
  • 表面电势(KPFM)
  • 存储电荷(EFM)
  • I-V 特性(CAFM,力成像)
  •  介质击穿(nanoTDDB)

压电特性

  • 机电响应(PFM)
  • 畴极性(PFM)
  • 压电迟滞现象(PFM)

磁学性能

  • 磁力梯度(MFM)
  • 磁滞现象 (MFM, VFM)
  • 磁电耦合 (MFM, PFM, VFM)

热性能

  • 热导率(SThM)
  • 热机械响应(ZTherm)

常见用途

  • 电池与电量储存
  • 生物相容性
  • 腐蚀和防污
  • 数据存储
  • 铁电体和压电材料
  • 光伏
  • 微电子行业
  • 传感器和致动器,包括MEMS(微机电系统)
  • 组织工程学和干细胞研究
  • 摩擦学

典型的沉积过程

  • ALD (原子层沉积)
  • CVD (化学蒸汽沉积)
  • MBE(分子束外延)
  • PLD (脉冲激光沉积)
  • PVD (物理蒸汽沉积)
  • 自组装
  • 溅射
  • 旋转涂膜
  • 热蒸发

"Probing the ionic and electrochemical phenomena during resistive switching of NiO films," W. Lu, J. Xiao, L.-M. Wong, S. Wang, and K. Zeng, ACS Appl. Mater. Interfaces 10, 8092 (2018). https://doi.org/10.1021/acsami.7b16188

"Orientation of ferroelectric domains and disappearance upon heating methylammonium lead triiodide perovskite from tetragonal to cubic ," S. M. Vorpahl, R. Giridharagopal, G. E. Eperon, I. M. Hermes, S. A. L. Weber, and D. S. Ginger, ACS Appl. Energy Mater. 1, 1534 (2018). https://doi.org/10.1021/acsaem.7b00330https://doi.org/10.1021/acsaem.7b00330

"Highly compact CsPbBr3 perovskite films decorated by ZnO nanoparticles for enhanced random lasing," C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, Nano Energy 40, 195 (2017). https://doi.org/10.1016/j.nanoen.2017.08.013

"Flexible and highly sensitive sensors based on bionic hierarchical structures," M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, and Y. Zhang, Adv. Funct. Mater. 27, 1606066 (2017). https://doi.org/10.1002/adfm.201606066

"Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects," T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic, B. Jancar, G. Tavcar, M. Makarovic, J. Walker, B. Malic, and D. Damjanovic, Nat. Mater. 16, 322 (2017). https://doi.org/10.1038/nmat4799

"Stimuli-responsive weak polyelectrolyte multilayer films: A platform for self triggered multi-drug delivery," S. Anandhakumar, P. Gokul, and A. M. Raichur, Mater. Sci. Eng. C 58, 622 (2016). https://doi.org/10.1016/j.msec.2015.08.039

"Multiferroic and magnetoelectric properties of BiFeO3/Bi4Ti3O12 bilayer composite films," J. Chen, Z. Tang, Y. Bai, and S. Zhao, J. Alloys Compd. 675, 257 (2016). https://doi.org/10.1016/j.jallcom.2016.03.119

"Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films," Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, and J. Huang, Energy Environ. Sci. 9, 1752 (2016). https://doi.org/10.1039/c6ee00413j

"An in situ study of the evolution of roughness for zinc electrodeposition within an imidazolium based ionic liquid electrolyte," J. S. Keist, C. A. Orme, P. K. Wright, and J. W. Evans, Electrochim. Acta 152, 161 (2015). https://doi.org/10.1016/j.electacta.2014.11.091

"Molecular-orientation-induced rapid roughening and morphology in organic - growth," J. Yang, S. Yim, and T. S. Jones, Sci. Rep. 5, 9441 (2015). https://doi.org/10.1038/srep09441

"Quantifying charge carrier concentration in ZnO films by scanning Kelvin microscopy," C. Maragliano, S. Lilliu, M. S. Dahlem, M. Chiesa, T. Souier, and M. Stefancich, Sci. Rep. 4, 4203 (2014). https://doi.org/10.1038/srep04203

"Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion," T. Mehmood, A. Kaynak, X. J. Dai, A. Kouzani, K. Magniez, D. R. de Celis, C. J. Hurren, and J. du Plessis, Mater. Chem. Phys. 143, 668 (2014). https://doi.org/10.1016/j.matchemphys.2013.09.052

"Stratified polymer grafts: Synthesis and characterization of 'brush' and 'gel' structures," A. Li, S. N. Ramakrishna, P. C. Nalam, E. M. Benetti, and N. D. Spencer, Adv. Mater. Interfaces 1 1300007 (2014). https://doi.org/10.1002/admi.201300007

"Efficient small bandgap polymer solar cells with fill factors for 300 nm thick films," W. Li, K. H. Hendriks, W. S. C. Roelofs, Y. Kim, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 25, 3182 (2013). https://doi.org/10.1002/adma.201300017

"Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by -assisted piezoresponse force microscopy," G. Caruntu, A. Yourdkhani, M. Vopsaroiu, and G. Srinivasan, Nanoscale 4, 3218 (2012). https://doi.org/10.1039/c2nr00064d

" and thickness evolution and epitaxial breakdown in highly strained BiFeO3 films," A. R. Damodaran, S. Lee, J. Karthik, S. MacLaren, and L. W. Martin, Phys. Rev. B 85, 024113 (2012). https://doi.org/10.1103/physrevb.85.024113

"V2O5 nano-electrodes with power and energy densities for Li-ion batteries," Y. Liu, M. Clark, Q. Zhang, D. Yu, D. Liu, J. Liu, and G. Cao, Adv. Energy Mater. 1, 194 (2011). https://doi.org/10.1002/aenm.201000037

"Photoinduced degradation studies of organic solar cell materials using Kelvin force and conductive scanning force microscopy," E. Sengupta, A. L. Domanski, S. A. L. Weber, M. B. Untch, H.-J. Butt, T. Sauermann, H. J. Egelhaaf, and R. Berger, J. Phys. Chem. C 115, 19994 (2011). https://doi.org/10.1021/jp2048713

"Nanomechanical properties of films of type I collagen fibrils," K.-H. Chung, K. Bhadriraju, T. A. Spurlin, R. F. Cook, and A. L. Plant, Langmuir 26, 3629 (2010). https://doi.org/10.1021/la903073v

"Improved performance of polymer bulk heterojunction solar cells through the reduction of separation via solvent additives," C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, Adv. Mater. 22, E63 (2010). https://doi.org/10.1002/adma.200903677

"Self-assembling polystyrene-block-poly(ethylene oxide) copolymer coatings: Resistance to protein and cell adhesion," P. A. George, B. C. Donose, and J. J. Cooper-White, Biomaterials 30, 2449 (2009). https://doi.org/10.1016/j.biomaterials.2009.01.012

"Centrifugal deposition of microgels for the rapid assembly of nonfouling films," A. B. South, R. E. Whitmire, A. J. Garcia, and L. A. Lyon, ACS Appl. Mater. Interfaces 1, 2747 (2009). https://doi.org/10.1021/am9005435

"Nanomechanical properties of polymer films measured by force-distance curves," B. Cappella and D. Silbernagl, Solid Films 516, 1952 (2008). https://doi.org/10.1016/j.tsf.2007.09.042

"A reversible wet/dry adhesive inspired by mussels and geckos," H. Lee, B. P. Lee, and P B. Messersmith, 448, 338 (2007). https://doi.org/10.1038/05968

"Diamond and hard carbon films for microelectromechanical systems (MEMS)—a nanotribological study," I. S. Forbes and J. I. Wilson, Solid Films 420, 508 (2002). https://doi.org/10.1016/S0040-6090(02)00854-4

沪ICP备17031777号-1 公安机关备案号31010402003473