牛津仪器集团成员
扩展

用于半导体和微电子学研究的原子力显微镜

semiconductor transistor device imaged using scanning microwave impedance microscopy (sMIM)

经过多年的发展,物理和电子设备的研究已扩展至化学、材料、机科学,以及工程学的所有分支,甚至是生物学。同时,在过去的20年里,原子力显微镜在多个科技进步领域发挥着重要的作用。Asylum Research生产的原子力显微镜为这些复杂的器件和材料提供了多种测量技术。就材料和器件的广度而言,目前市场上还缺乏能够与MFP-3D和Cypher原子力显微镜相媲美的仪器。

咨询AFM领域的专家

阻抗扫描显微镜(sMIM)

• 测量局部电容和电阻、掺杂浓度(dC/dV)、损耗(dR/dV)的变化

导电的 (CAFM)

  • 测量针尖电流随着施加于样品的偏压的的变化

Kelvin 探针力显微镜 (KPFM)

  • 根据功函数的差异、陷阱电荷或电压偏移,准确地测量表面接触电势

静电力显微镜 (EFM)

  • 对嵌入绝缘材料中的电容和导线的局部变化所引起的力梯度进行测量

利用快速力成像模式测量电流

  • 在快速力曲线的接触段中,在对样品施加偏压情况下测量电流

纳米级时间相关电介质击穿(nanoTDDB)

  • 检测电介质的击穿电压

扫描门显微镜

  • 对器件中的门进行均匀性测量和故障检测

环境控制

  • Cypher ES和其环境腔室可在一个手套箱中使用,以防止材料和器件在开发和分析故障时由于环境原因而导致的降解变化

受衍射限制的成像

  • 科研人员可以利用它找到单个的故障点和器件,以进行测试和分析

MacroBuilder

  • 高水平的GUI代码为用户提供了自动化测量的灵活性,以优化研究时间

sMIM

  • 对多种线性和非线性材料进行表征,包括:导体、和绝缘体。
  • 根据材料的介电常数和导电性提供对比度
  • 对掺杂剂浓度和类型进行测量,应用于微电子器件的故障分析。
  • 检测碳纳米管的金属和半金属特性
  • 根据在样品表面上测得的电容变化,将隐藏的结构可视化
  • 以小于50 nm的分辨率,对奇异的和其他新颖的纳米结构和纳米装置进行表征

KPFM

  • 确定含有陷阱电荷的样品的区域
  • 监测覆盖层和厚度的均匀性
  • 根据功函数探测金属的纳米结构
  • 对接头和异质结构的潜在特性进行表征

EFM

  • 检测隐藏在绝缘基质中的碳纳米管
  • 检测聚合物混合物中的导电性夹杂物

CAFM

  • 对非易失性存储器中接入器件的切换性能进行表征
  • 对氧化膜的均匀性和缺陷进行表征
  • 测量太阳能材料和器件的光电流
  • 测量和纳米结构的电阻

电流成像

  • 在一个nxn阵列上对电流-电压(I-V)进行成像,以便对扩散电阻行表征。
  • 利用快速力曲线与电流成像相结合,快速进行电流的测量,以便对精巧的器件和材料进行成像
  • 分析套件,可对材料和器件进行迁移率、刚度和其他关键特性的分析

"Biodegradable electronic systems in 3D, heterogeneously integrated formats," J. K. Chang, H. P. Chang, Q. Guo, J. Koo, C. I. Wu, and J. A. Rogers, Adv. Mater. 30, 1704955 (2018). https://doi.org/10.1002/adma.201704955

"Local characterization of mobile charge carriers by two electrical modes: multi-harmonic EFM versus sMIM," L. Lei, R. Xu , S. Ye, X. Wang, K. Xu, S. Hussain, Y. J. Li, Y. Sugawara, L. Xie, W. Ji, and Z. Cheng, J. Phys. Commun. 2, 025013 (2018). https://doi.org/10.1088/2399-6528/aaa85f

"Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide," V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, and M. C. Hersam, 554, 500 (2018). https://doi.org/10.1038/25747

"Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors," R. Giridharagopal, L. Q. Flagg, J. S. Harrison, M. E. Ziffer, J. Onorato, C. K. Luscombe, and D. S. Ginger, Nat. Mater. 16, 737 (2017). https://doi.org/10.1038/nmat4918

"Multifunctional logic demonstrated in a flexible multigate oxide‐based ‐double‐layer transistor on paper substrate," F. Shao, P. Feng, C. Wan, X. Wan, Y. Yang, Y. Shi, and Q. Wan, Adv. Electron. Mater. 3, 1600509 (2017). https://doi.org/10.1002/aelm.201600509

"Determining the resolution of scanning impedance microscopy using atomic-precision buried donor structures," D. A. Scrymgeour, A. Baca, K. Fishgrab, R. J. Simonson, M. Marshall, E. Bussmann, C. Y. Nakakura, M. Anderson, and S. Misra, Appl. Surf. Sci. 423, 1097 (2017). https://doi.org/10.1016/j.apsusc.2017.06.261

"Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions," W. J. Hu, Z. Wang, W. Yu, and T. Wu, Nat. Comm. 7, 10808 (2016). https://doi.org/10.1038/ncomms10808

"Analysis of conductance, read disturb and switching statistics in HfO2 RRAM using conductive ," A. Ranjan, N. Raghavan, J. Molina, S. J. O'Shea, K. Shubhakar, and K. L. Pey, Microelectron. Reliab. 64, 172 (2016). https://doi.org/10.1016/j.microrel.2016.07.112

" removal mechanism of copper chemical mechanical polishing in a periodate-based slurry," J. Cheng, T. Wang, Y. He, and X. Lu, Appl. Surf. Sci. 337, 130 (2015). https://doi.org/10.1016/j.apsusc.2015.02.076

"Carrier density modulation in a germanium heterostructure by ferroelectric switching," P. Ponath, K. Fredrickson, A. B. Posadas, Y. Ren, X. Wu, R. K. Vasudevan, M. B. Okatan, S. Jesse, T. Aoki, M. R. McCartney, D. J. Smith, S. V. Kalinin, K. Lai, and A. A. Demkov, Nat. Commun. 6, 6067 (2015). https://doi.org/10.1038/ncomms7067

"Two-dimensional quasi-freestanding molecular crystals for -performance organic - transistors," D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan, J. Liu, J. Yao, Z. Wang, S. Yuan, Y. Li, Y. Shi, J. Wang, Z. Ni, L. He, F. Miao, F. Song, H. Xu, K. Watanabe, T. Taniguchi, J.-B. Xu, and X. Wang, Nat. Commun. 5, 5162 (2014). https://doi.org/10.1038/ncomms6162

"-mobility - transistors fabricated with macroscopic aligned semiconducting polymers," H.-R. Tseng, H. Phan, C. Luo, M. Wang, L. A. Perez, S. N. Patel, L. Ying, E. J. Kramer, T.-Q. Nguyen, G. C. Bazan, and A. J. Heeger, Adv. Mater. 26, 2993 (2014). https://doi.org/10.1002/adma.201305084

"Effective passivation of exfoliated black phosphorus transistors against ambient degradation," J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Nano Lett. 14, 6964 (2014). https://doi.org/10.1021/nl5032293

"-voltage self-assembled monolayer - transistors on flexible substrates," T. Schmaltz, A. Y. Amin, A. Khassanov, T. Meyer-Friedrichsen, H.-G. Steinrück, A. Magerl, J. J. Segura, K. Voïtchovsky, F. Stellacci, and M. Halik, Adv. Mater. 25, 4511 (2013). https://doi.org/10.1002/adma.201301176

"Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes," S. H. Jin, S. N. Dunham, J. Song, X. Xie, J. Kim, C. Lu, A. Islam, F. Du, J. Kim, J. Felts, Y. Li, F. Xiong, M. A. Wahab, M. Menon, E. Cho, K. L. Grosse, D. J. Lee, H. U. Chung, E. Pop, M. A. Alam, W. P. King, Y. Huang and J. A. Rogers, Nat. Nanotechnol. 8, 347 (2013). https://doi.org/10.1038/nnano.2013.56

"Ferroelectric---enhanced electroresistance in metal/ferroelectric/ tunnel junctions," Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, Nat. Mater. 12, 617 (2013). https://doi.org/10.1038/nmat3649

"Strain-gated piezotronic transistors based on vertical zinc oxide nanowires," W. Han, Y. Zhou, Y. Zhang, C.-Y. Chen, L. Lin, X. Wang, S. Wang, and Z. L. Wang, ACS Nano 6, 3760 (2012). https://doi.org/10.1021/nn301277m

"Solid-state memories based on ferroelectric tunnel junctions," A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthélémy, Nat. Nanotechnol. 7, 101 (2012). https://doi.org/10.1038/nnano.2011.213

"Single-layer MoS2 transistors," B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279

"Creation of a two-dimensional electron gas at an oxide on silicon," J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nat. Commun. 1, 94 (2010). https://doi.org/10.1038/ncomms1096

" resolution, sensitivity inorganic resists," J. Stowers and D. A. Keszler, Microelectron. Eng. 86, 730 (2009). https://doi.org/10.1016/j.mee.2008.11.034

"Tailoring GaN surfaces with biomolecules," E. Estephan, C. Larroque, F. J. G. Cuisinier, Z. Bálint, and C. Gergely, J. Phys. Chem. B 112, 8799 (2008). https://doi.org/10.1021/jp804112y

"Organic single-crystal - transistors of a soluble anthradithiophene," O. D. Jurchescu, S. Subramanian, R. J. Kline, S. D. Hudson, J. E. Anthony, T. N. Jackson, and D. J. Gundlach, Chem. Mater. 20, 6733 (2008). https://doi.org/10.1021/cm8021165

"Hunting the origins of line width roughness with chemical force microscopy," J. T. Woodward, J. Hwang, V. M. Prabhu, and K.-W. Choi, in CP931, Frontiers of Characterization and Metrology for Nanoelectronics (eds. D. G. Seiler, A. C. Diebold, R. McDonald, C. M. Gamer, D. Herr, R. P. Khosla, and E. M. Secula), AIP Conference Proceedings 931, 413 (2007). https://doi.org/10.1063/1.2799409

"Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding," L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, CIRP Ann. Manuf. Technol. 55, 313 (2006). https://doi.org/10.1016/S0007-8506(07)60424-7

沪ICP备17031777号-1 公安机关备案号31010402003473