牛津仪器集团成员
扩展

用于纳米机械测量的原子力显微镜

Atomic force microscopy modulus map of a solder lead-tin alloy

纳米级的机械性能是许多应用中考量的一个关键因素,而原子力显微镜则是能够测量这些性能的工具之一。利用Asylum Research 的NanomechPro™工具包,你可以测量任何材料(从细胞到陶瓷)的纳米级机械特性。这些技术能够准确地评估各种纳米级机械行为,包括弹性、粘性、附着力和硬度。NanomechPro™工具包的多种技术可以为不同的应用提供更大的灵活性,并通过结果比对实现更深入的理解。此外,利用NanomechPro™工具包的模式,还可以对更多特性进行更快速的测量。NanomechPro™工具包支持Cypher™ 和MFP-3D™ 系列原子力显微镜的功能。

With the Interferometric Displacement Sensor (IDS) option for the Cypher AFM, nanomechanical characterization modes are now even more quantitative. With traditional optical beam deflection (OBD) detection, the OBD signal can be misinterpreted when the cantilever deviates from its expected or modelled shape. In contrast, the IDS provides an absolute measure of cantilever amplitude and deflection, improving accuracy for multi-frequency techniques, mode shape mapping, tip-sample contact mechanics, and on-and-off resonance contact techniques. Learn more from the white paper found in the gray tab below.

咨询AFM领域的专家

力曲线/力曲线阵列

  • 利用经典的准静态法,使用力与距离曲线来提供量化的样品信息,例如:模量、硬度和附着力

快速力成像(FFM)

  • 力与距离成像模式,像素率可达300-1000 Hz,并提供模量、附着力、可塑性和其他特性的表征

调幅 – 调频粘弹性成像 (AM-FM)

  • 量化的双峰轻敲模式,测量探针的针尖与样品的接触刚度、损耗因数,并使用赫兹模型来测量弹性模量(E’)

接触共振粘弹性成像(CR-)

  • 接触模式成像,以测量存储模量(E')和损失模量(E”)

Dual AC 成像

  • 量化的双峰轻敲模式,根据材料的刚度和粘弹性提供对比

损耗角正切成像

  • 轻敲模式成像,以储能耗散的形式,将相位数据量化,也被称为“tan δ”

力调制成像

  • 量化的接触模式技术,可测量样品的变形,并提供耗散

力曲线/力曲线阵列

  • 对已处理的和未经处理的生物组织的弹性进行比较
  • 提供细胞的二维力阵列模量测量
  • 对水凝胶的机械特性进行表征

FFM

  • 利用Hertz、JKR、DMT和Oliver-Pharr模型,进行量化的力曲线分析
  • 对聚合物样品进行模量比较,同时追踪样品的形貌

CR-

  • 高刚度材料的局部机械特性
  • 钢刀片、碳化物、类金钢石材料的模量对比
  • 提供材料的量化模量,例如:木材和骨头等

调幅-调频

  • 快速、温和、高分辨率的纳米机械信息
  • 多种材料的粘弹性,从电池到聚合物、合金和陶瓷等。
  • 淀粉样蛋白纤维、电介质和图形化表面的耗散和弹性模量。
  • 在多层“三明治”材料中识别聚合物(PS、PE、HDPE等)

Dual AC 成像

  • 提供轮胎橡胶混合物的对比
  • 对材料成分(例如:纳米复合材料和聚合物混合物)进行可视化

损耗角正切成像

  • 在商业包装材料中识别阻挡层
  • 对多种粘弹性材料进行对比,例如:聚合物、复合材料、合金等

"Probing the swelling-dependent mechanical and properties of polyacrylamide hydrogels through -based dynamic nanoindentation," Y. Lai and Y. Hu, Soft 14, 2619 (2018). https://doi.org/10.1039/c7sm02351k

"Controlling the mechanoelasticity of model biomembranes with room- ionic liquids," C> Rotella, P. Kumari, B. J. Rodriguez, S. P. Jarvis, and A. Benedetto, Biophys. Rev. 10, 751 (2018). https://doi.org/10.1007/s12551-018-0424-5

"Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by - -based rheology," B. K. Connizzo and A. J. Grodzinsky, J. Biomech. 54, 11 (2017). https://doi.org/10.1016/j.jbiomech.2017.01.029

"Polymer nanomechanics: Separating the size from the substrate in nanoindentation," L. Li, L. M. Encarnacao, and K. A. Brown, Appl. Phys. Lett. 110, 043105 (2017). https://doi.org/10.1063/1.4975057

"Mechanical properties of highly porous super liquid‐repellent surfaces," M. Paven, R. Fuchs, T. Yakabe, D.,Vollmer, M. Kappl, A. N. Itakura, and H.-J. Butt, Adv. Funct. Mater. 26, 4914 (2016). https://doi.org/10.1002/adfm.201600627

"Practical loss tangent imaging with amplitude-modulated atomic force microscopy," R. Proksch, M. Kocun, D. Hurley, M. Viani, A. Labuda, W. Meinhold, and J. Bemis, J. Appl. Phys. 119, 134901 (2016). https://doi.org/10.1063/1.4944879

"Fast, quantitative nanomechanical measurements using AM-FM Viscoelastic Mapping mode," D. Hurley, M. Kocun, I. Revenko, B. Ohler, and R. Proksch, Microscopy and Analysis 29, 9 (2015). Download Here

"Contact resonance atomic force microscopy imaging in air and water using photothermal excitation," M. Kocun, A. Labuda, A. Gannepalli, and R. Proksch, Rev. Sci. Instrum. 86, 083706 (2015). https://doi.org/10.1063/1.4928105

"Predictive modelling-based and experiments for synthesis and spinning of bioinspired silk fibres," S. Lin, S. Ryu, O. Tokareva, G. Gronau, M. M. Jacobsen, W. Huang, D. J. Rizzo, D. Li, C. Staii, N. M. Pugno, J. Y. Wong, D. L. Kaplan, and M. J. Buehler, Nat. Comm. 6, 6892 (2015). http://doi.org/10.1038/ncomms7892

"Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy," P. C. Nalam, N. N. Gosvami, M. A. Caporizzo, R. J. Composto, and R. W. Carpick, Soft 11, 8165 (2015). https://doi.org/10.1039/c5sm01143d

"Fast nanomechanical of soft ," E. T. Herruzo, A. P. Perrino, and R. Garcia, Nat. Commun. 5, 3126 (2014). https://doi.org/10.1038/ncomms4126

" intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial 's moduli," G. Lamour, C. K. Yip, H. Li, and J. Gsponer, ACS Nano 8, 3851 (2014). https://doi.org/10.1021/nn5007013

"Quantifying cell-to-cell variation in power-law rheology," P. Cai, Y. Mizutani, M. Tsuchiya, J. M. Maloney, B. Fabry, K. J. V. Vliet, and T. Okajima, Biophys. J. 105, 1093 (2013). https://doi.org/10.1016/j.bpj.2013.07.035

"Nanomechanical mapping of soft by bimodal force microscopy," R. Garcia and R. Proksch, Eur. Polym. J. 49, 1897 (2013). https://doi.org/10.1016/j.eurpolymj.2013.03.037

"Loss tangent imaging: and simulations of repulsive-mode tapping atomic force microscopy," R. Proksch and D. G. Yablon, Appl. Phys. Lett. 100, 073106 (2012). https://doi.org/10.1063/1.3675836

"Mapping nanoscale elasticity and dissipation using dual contact resonance ," A. Gannepalli, D. G. Yablon, A. H. Tsou, and R. Proksch, 22, 355705 (2011). https://doi.org/10.1088/0957-4484/22/35/355705

"Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy," A. Raman, S. Trigueros, A. Cartagena, A. P. Z. Stevenson, M. Susilo, E. Nauman, and S. A. Contera, Nat. Nanotechnol. 6, 809 (2011). https://doi.org/10.1038/nnano.2011.186

"Viscoelastic property mapping with contact resonance force microscopy," J. P. Killgore, D. G. Yablon, A. Tsou, A. Gannepalli, P. Yuya, J. Turner, R. Proksch, and D. C. Hurley, Langmuir 27, 13983 (2011). https://doi.org/10.1021/la203434w

"Mechanical properties of face-centered cubic supercrystals of nanocrystals," E. Tam, P. Podsiadlo, E. Shevchenko, D. F. Ogletree, M.-P. Delplancke-Ogletree, and P. D. Ashby, Nano Lett. 10, 2363 (2010). https://doi.org/10.1021/nl1001313

"Tuning the elastic modulus of hydrated collagen fibrils," C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, Biophys. J. 97, 2985 (2009). https://doi.org/10.1016/j.bpj.2009.09.010

"Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength," B. C. Isenberg, P. A. DiMilla, M. Walker, S. Kim, and J. Y. Wong, Biophys. J. 97, 1313 (2009). https://doi.org/10.1016/j.bpj.2009.06.021

" viscoelasticity of individual gram-negative bacterial cells measured using atomic force microscopy," V. Vadillo-Rodriguez, T. J. Beveridge, and J. R. Dutcher, J. Bacteriol. 190, 4225-4232 (2008). https://doi.org/10.1128/jb.00132-08

"A -layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: Do cell properties reflect metastatic potential?" E. M. Darling, S. Zauscher, J. A. Block, and F. Guilak, Biophys. J. 92, 1784 (2007). https://doi.org/10.1529/biophysj.106.083097

"Packing density and structural heterogeneity of insulin amyloid fibrils measured by nanoindentation," S. Guo, and B. B. Akhremitchev, Biomacromolecules 7, 1630 (2006). https://doi.org/10.1021/bm0600724

"Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy," R. Proksch, Appl. Phys. Lett. 89, 113121 (2006). https://doi.org/10.1063/1.2345593

沪ICP备17031777号-1 公安机关备案号31010402003473