牛津仪器集团成员
扩展

用于纳米级电学特性性能描述表征的原子力显微镜(AFM)

Surface potential image of a carbon-filled polymer blend imaged with atomic force microscopy

原子力显微镜特有的空间分辨率和直接探测能力使其成为纳米级电学性能表征的强大工具。Asylum Research生产的 MFP-3D™ 和 Cypher™ 系列可用于各种纳米级的电学性能表征。虽然“量化的电学测量”是这款的目标,但“电学模式”也经常用于快速检测、区分和识别样品中其他材料电学特性的性质差异。

咨询AFM领域的专家

Kelvin探针力显微镜(KPFM)

  • 根据功函数的差异、陷阱电荷或电压偏移,精确地测量表面电势

静电力显微镜(EFM)

  • 测量静电荷导致的力梯度

纳米级时间相关电介质击穿(nanoTDDB)

  • 检测电介质的击穿电压

导电的(CAFM)

  • 通过施加到样品的偏压,对随着该偏压变化的针尖电流进行测量

利用快速力成像模式测量电流

  • 在快速力曲线的接触段中,在对样品施加偏压的情况下测量电流

阻抗扫描显微镜(sMIM)

  • 测量局部电容和电阻,以及dC/dV 和 dR/dV中的变化

KPFM

  • 检测聚合物混合物中的导电性内含物
  • 监测覆盖层和厚度的均匀性
  • 根据功函数探测金属的纳米结构
  • 表征接头和异质结构的潜在特性

EFM

  • 确定含有陷阱电荷的样品的区域
  • 检测埋在绝缘基质中的碳纳米管

CAFM

  • 描述“非易失性存储器”中访问设备的切换性能

sMIM

  • 表征各种线性和非线性材料(包括导体、和绝缘体)的特性
  • 根据材料的介电常数和导电性进行对比分析
  • 测量掺杂剂的浓度和类型,应用于微电子设备的故障分析
  • 检测碳纳米管的金属和半金属特性
  • 根据样品表面上测得的电容变化,对埋藏的结构进行可视化

"Local characterization of mobile charge carriers by two electrical modes: multi-harmonic EFM versus sMIM," L. Lei, R. Xu, S. Ye, X. Wang, K. Xu, S. Hussain, Y. J. Li, Y. Sugawara, L. Xie, W. Ji, and Z. Cheng, J. Phys. Commun. 2, 025013 (2018). https://doi.org/10.1088/2399-6528/aaa85f

"Probing the ionic and electrochemical phenomena during resistive switching of NiO films," W. Lu, J. Xiao, L.-M. Wong, S. Wang, and K. Zeng, ACS Appl. Mater. Interfaces 10, 8092 (2018). https://doi.org/10.1021/acsami.7b16188

"Optimization of the Ag/PCBM interface by a rhodamine interlayer to enhance the efficiency and stability of perovskite solar cells," J. Ciro, S. Mesa, J. I. Uribe, M. A. Mejía-Escobar, D. Ramirez, J. F. Montoya, R. Betancur, H.-S. Yoo, N.-G. Park, and F. Jaramillo, Nanoscale 9, 9440 (2017). https://doi.org/10.1039/c7nr01678f

"Spatially resolved multicolor CsPbX3 heterojunctions via anion exchange," L. Dou, M. Lai, C. S. Kley, Y. Yang, C. G. Bischak, D. Zhang, S. W. Eaton, N. S. Ginsberg, and P. Yang, Proc. Natl. Acad. Sci. U.S.A. 114, 7216 (2017). https://doi.org/10.1073/.1703860114

"New insights on electro-optical response of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) to humidity," E. S. Muckley, C. B. Jacobs, K. Vidal, J. P. Mahalik, R. Kumar, B. G. Sumpter, and I. N. Ivanov, ACS Appl. Mater. Interfaces 9, 15880 (2017). https://doi.org/10.1021/acsami.7b03128

"Mapping the photoresponse of CH3NH3PbI3 hybrid perovskite films at the nanoscale," Y. Kutes, Y. Zhou, J. L. Bosse, J. Steffes, N. P. Padture, and B. D. Huey, Nano Lett. 16, 3434 (2016). https://doi.org/10.1021/acs.nanolett.5b04157

"Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films," Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, and J. Huang, Energy Environ. Sci. 9, 1752 (2016). https://doi.org/10.1039/c6ee00413j

"‐performance and environmentally stable planar heterojunction perovskite solar cells based on a solution‐processed copper‐doped nickel oxide hole‐transporting layer," J. H. Kim, P.‐W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.‐Y. Jen, Adv. Mater. 27, 695 (2015). https://doi.org/10.1002/adma.201404189

"Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2," V. K. Sangwan, D. Jariwala, I. S. Kim, K. S. Chen, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Nat. Nanotechnol. 10, 403 (2015). https://doi.org/10.1038/nnano.2015.56

"Polymer homo‐tandem solar cells with best efficiency of 11.3%," H. Zhou, Y. Zhang, C. K. Mai, S. D. Collins, G. C. Bazan, T. Q. Nguyen, and A. J. Heeger, Adv. Mater. 27, 1767 (2015). https://doi.org/10.1002/adma.201404220

"Observation and alteration of states of hematite photoelectrodes," C. Du, M. Zhang, J.-W. Jang, Y. Liu, G.-Y. Liu, and D. Wang, J. Phys. Chem. C 118, 17054 (2014). https://doi.org/10.1021/jp5006346

"Solvent‐polarity‐induced active layer morphology control in crystalline diketopyrrolopyrrole‐based band gap polymer photovoltaics," S. Ferdous, F. Liu, D. Wang, and T.P. Russell, Adv. Energy Mater. 4, 1300834 (2014). https://doi.org/10.1002/aenm.201300834

"Quantifying charge carrier concentration in ZnO films by scanning Kelvin microscopy," C. Maragliano, S. Lilliu, M. S. Dahlem, M. Chiesa, T. Souier, and M. Stefancich, Sci. Rep. 4, 4203 (2014). https://doi.org/10.1038/srep04203

"A new quantitative experimental approach to investigate single cell adhesion on multifunctional substrates," C. Canale, A. Petrelli, M. Salerno, A. Diaspro, and S. Dante, Biosens. Bioelectron. 48, 172 (2013). http://doi.org/10.1016/j.bios.2013.04.015

"Kelvin microscopy and electronic measurements in reduced oxide chemical sensors," C. E. Kehayias, S. MacNaughton, S. Sonkusale, and C. Staii, 24, 245502 (2013). https://doi.org/10.1088/0957-4484/24/24/245502

" spatial resolution Kelvin force microscopy with coaxial probes," K. A. Brown, K. J. Satzinger, and R. M. Westervelt, 23, 115703 (2012). https://doi.org/10.1088/0957-4484/23/11/115703

"Sub-30 nm scaling and -speed operation of fully-confined access-devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) materials," K. Virwani, G.W. Burr, R.S. Shenoy, C.T. Rettner, A. Padilla, T. Topuria, P.M. Rice, G. Ho, R.S. King, K. Nguyen, A.N. Bowers, M. Jurich, M. BrightSky, E.A. Joseph, A.J. Kellock, N. Arellano, B.N. Kurdi, and K. Gopalakrishnan Kumar, in IEEE International Electron Devices Meeting 2012 Technical Digest (10-13 December 2012, San Francisco, CA), pp. 2.7.1-2.7.4. https://doi.org/10.1109/iedm.2012.6478967

"Photoinduced degradation studies of organic solar cell materials using Kelvin force and conductive scanning force microscopy," E. Sengupta, A. L. Domanski, S. A. Weber, M. B. Untch, H. J. Butt, T. Sauermann, H. J. Egelhaaf, and R. Berger, J. Phys. Chem. C 115, 19994 (2011). https://doi.org/10.1021/jp2048713

"Kelvin force microscopy studies of work function of transparent conducting ZnO:Al electrodes synthesized under varying oxygen pressures," R. Jaramillo and S. Ramanathan, Sol. Energy Mater. Sol. Cells 95, 602 (2011). https://doi.org/10.1016/j.solmat.2010.09.025

"Nanoscale, electrified liquid jets for -resolution printing of charge," J.-U. Park, S. Lee, S. Unarunotai, Y. Sun, S. Dunham, T. Song, P. M. Ferreira, A. G. Alleyene, U. Paik, and J. A. Rogers, Nano Lett. 10, 584 (2010). https://doi.org/10.1021/nl903495f

"Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties," Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, J. Am. Chem. Soc. 131, 7792 (2009). https://doi.org/10.1021/ja901545q

"Differential conductivity in self-assembled nanodomains of a diblock copolymer using polystyrene-block-poly(ferrocenylethylmethylsilane)," J. K. Li, S. Zou, D. A. Rider, I. Manners, and G. C. Walker, Adv. Mater. 20, 1989 (2008). https://doi.org/10.1002/adma.200702796

"Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy," O. G. Reid, K. Munechika, and D. S. Ginger, Nano Lett. 8, 1602 (2008). https://doi.org/10.1021/nl080155l

"Near-static dielectric polarization of individual carbon nanotubes," W. Lu, D. Wang, and L. Chen, Nano Lett. 7, 2729 (2007). https://doi.org/ 10.1021/nl071208m

"Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment," J. Song, J. Zhou, and Z. L. Wang, Nano Lett. 6, 1656 (2006). https://doi.org/10.1021/nl060820v

沪ICP备17031777号-1 公安机关备案号31010402003473