牛津仪器集团成员
扩展

用于能量存储和电池研究的原子力显微镜

Atomic force microscope image of a lithium battery electrode

原子力显微镜能够对电化学过程进行局部探测,所以它非常适合对能量存储研究进行表征。如今,各种技术正被广泛应用于延长存储设备中(从锂离子电池、超级电容器到燃料电池等)新一代材料的能量密度和寿命的研究。除了研究纳米结构对设备性能和可靠性的影响以外,原子力显微镜还可用于研究局部离子传输和反应性。

咨询AFM领域的专家
  • 电化学应变显微镜(ESM)有助于离子传输、相互作用动力学,以及反应性的研究。
  • 对电化学电池的氧化还原反应进行现场研究(利用Cypher ES和MFP系列)
  • 凭借高力灵敏度,可对电极-电解质的双电层进行成像。
  • 高分辨率纳米结构的表征,有助于优化设备的性能。
  • 提供现成的手套箱解决方案
  • 锂离子电池
  • 燃料电池
  • 超级电容器
  • 离子液体双层
  • 电极和分离器的材料
  • 电极纳米结构
  • 电化学
  • 充放电循环的形貌效应

"Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors," P. Buragohain, C. Richter, T. Schenk, H. Lu, T. Mikolajick, U. Schroeder, and A. Gruverman, Appl. Phys. Lett. 112, 222901 (2018). https://doi.org/10.1063/1.5030562

"Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 superionic conductor by spark plasma sintering for enhanced ionic conductivity," S. Duan, H. Jin, J. Yu, E. N. Esfahani, B. Yang, J. Liu, Y. Ren, Y. Chen, L. Lu, X. Tian, S. Hou, and J. Li, Nano Energy 51, 19 (2018). https://doi.org/10.1016/j.nanoen.2018.06.050

"Stamping of flexible, coplanar micro‐supercapacitors using MXene inks," C. Zhang, M. P. Kremer, A. Seral‐Ascaso, S.-H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, and V. Nicolosi, Adv. Func. Mater. 28, 1705506 (2018). https://doi.org/10.1002/adfm.201705506

"Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films," Y. Hao, X. Wang, K. Bi, J, Zhang, Y. Huang, L. Wu, P. Zhao, K. Xu, M. Lei, and L. Li, Nano Energy 31, 49 (2017). https://doi.org/10.1016/j.nanoen.2016.11.008

"Direct observation of the dynamics of single metal ions at the with solids in aqueous solutions," M. Ricci, W. Trewby, C. Cafolla, and K. Voïtchovsky, Sci. Rep. 7, 43234 (2017). https://doi.org/10.1038/srep43234

"Role of in enhancing the mechanical properties of TiO2/ heterostructures," C. Cao, S. Mukherjee, J. Liu, B. Wang, M. Amirmaleki, Z. Lu, J. Y. Howe, D. Perovic, X. Sun, C. V. Singh, Y. Sun, and T. Filleter, Nanoscale 9, 11678 (2017). https://doi.org/10.1039/c7nr03049e

"Nanoscale elastic changes in Ti3C2Tx (MXene) pseudocapacitive electrodes," J. Come, Y. Xie, M. Naguib, S. Jesse, S. V. Kalinin, Y. Gogotsi, P. R. C. Kent, and N. Balke, Adv. Energy Mater. 6, 1502290 (2016). https://doi.org/10.1002/aenm.201502290

"Influence of polar organic solvents in an ionic liquid containing lithium bis(fluorosulfonyl)amide: on the cation–anion interaction, lithium ion battery performance, and solid electrolyte interphase," A. Lahiri, G. Li, M. Olschewski, and F. Endres, ACS Appl. Mater. Interfaces 8, 34143 (2016). https://doi.org/10.1021/acsami.6b12751

" defects in double layers of ionic liquids at carbon interfaces," J. M. Black, M. B. Okatan, G. Feng, P. T. Cummings, S. V. Kalinin, and N. Balke, Nano Energy 15, 737 (2015). https://doi.org/10.1016/j.nanoen.2015.05.037

"Nanostructure of the ionic liquid-graphite Stern layer," A. Elbourne, S. McDonald, K. Voïchovsky, F. Endres, G. G. Warr, and R. Atkin, ACS Nano 9, 7608 (2015). https://doi.org/10.1021/acsnano.5b02921

"An in situ study of the evolution of roughness for zinc electrodeposition within an imidazolium based ionic liquid electrolyte," J. S. Keist, C. A. Orme, P. K. Wright, and J. W. Evans, Electrochim. Acta 152, 161 (2015). https://doi.org/10.1016/j.electacta.2014.11.091

" of properties on the performance of carbon plastic electrodes for flow battery applications," X. Sun, T. Souier, M. Chiesa, and A. Vassallo, Electrochim. Acta 148, 104 (2014). http://dx.doi.org/10.1016/j.electacta.2014.10.003

"Ferroelectric barium titanate nanocubes as capacitive building blocks for energy storage applications," S. S. Parizi, A. Mellinger, and G. Caruntu, ACS Appl. Mater. Interfaces 6, 17506 (2014). https://doi.org/10.1021/am502547h

"In situ tracking of the nanoscale expansion of porous carbon electrodes," T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, and N. Balke, Energy Environ. Sci. 6, 225 (2013). https://doi.org/10.1039/c2ee23707e

"Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite," J. M. Black, D. Walters, A. Labuda, G. Feng, P. C. Hillesheim, S. Dai, P. T. Cummings, S. V. Kalinin, R. Proksch, and N. Balke, Nano Lett. 13, 5954 (2013). https://doi.org/10.1021/nl4031083

"Miniature environmental chamber enabling in situ scanning microscopy within reactive environments," S. S. Nonnenmann and D. A. Bonnell, Rev. Sci. Instrum. 84, 073707 (2013). https://doi.org/10.1063/1.4813317

"Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by scanning microscopy techniques," J. Zhu, L. Lu, and K. Zeng, ACS Nano 7, 1666 (2013). https://doi.org/10.1021/nn305648j

"Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/ and Mn3O4 nanoparticle/ paper electrodes," H. Gao, F. Xiao, C. B. Ching, and H. Duan, ACS Appl. Mater. Interfaces 4, 7020 (2012). https://doi.org/10.1021/am302280b

"Lithographically patterned gold/manganese dioxide core/shell nanowires for capacity, rate, and cyclability hybrid electrical energy storage," W. Yan, J. Y. Kim, W. Xing, K. C. Donavan, T. Ayvazian, and R. M. Penner, Chem. Mater. 24, 2382 (2012). https://doi.org/10.1021/cm3011474

"Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution," S. Guo, S. Jesse, S. Kalnaus, N. Balke, C. Daniel, and S. V. Kalinin, J. Electrochem. Soc. 158, A982 (2011). https://doi.org/10.1149/1.3604759

"Measuring oxygen reduction/evolution reactions on the nanoscale," A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, Nat. Chem. 3, 707 (2011). https://doi.org/10.1038/nchem.1112

"In situ synthesis of Co3O4/ nanocomposite for lithium-ion batteries and supercapacitors with capacity and supercapacitance," B. Wang, Y. Wang, J. Park, H. Ahn, and G. Wang, J. Alloys Compd. 509, 7778 (2011). https://doi.org/10.1016/j.jallcom.2011.04.152

"The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions," I. Sirés, C. , C. P. de León, and F. Walsh, Electrochim. Acta 55, 2163 (2010). https://doi.org/10.1016/j.electacta.2009.11.051

"Mn3O4 nanoparticles embedded into nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors," B. Wang, J. Park, C. Wang, H. Ahn, and G. Wang, Electrochim. Acta 55, 6812 (2010). https://doi.org/10.1016/j.electacta.2010.05.086

沪ICP备17031777号-1 公安机关备案号31010402003473