牛津仪器集团成员
扩展

用于太阳能、光伏和热电研究的AFM

AFM image showing the photoconductive properties of a photovoltaic material

光伏(PV)、热电(TE),以及相关的材料和设备正在迅速发展,并扩展到许多领域,包括光伏聚合物、以传统为基础的光伏设备,以及现在的钙钛矿光伏材料。获得丰富、低成本的可再生能源是有希望的,但需要改进对下一代光伏(PV)材料的表征技术。这一任务的关键是原子力显微镜(AFM)的高分辨率成像能力。Asylum Research生产的原子力显微镜能够在主要光伏材料和设备的研发阶段,为相关的研究提供表征平台,包括:透明材料、不透明材料、顶部和底部照明,以及使用外部的、用户提供的光源。在行业中,我们的电学表征套件、广泛的平台设置,以及多种软件和硬件定制工具都是十分优异的。

咨询AFM领域的专家

Kelvin探针力显微镜 (KPFM)

  • 根据光或热激励电流的差异,精确地测量表面接触电势差(CPD)

静电力显微镜 (EFM)

  • 测量局部电容梯度的变化。通过这种技术,可以观察到光或热激励电流随着时间函数的变化

阻抗扫描显微镜(sMIM)

  • 测量局部电容和电阻的变化,让科研人员能够看到“漂浮”材料上的光电流,或者没有内置在设备上的光伏材料

导电的(CAFM)

  • 测量通过针尖的电流,随着施加于样品偏压的变化,以及随着照明强度或温度的的变化

利用快速力成像模式测量电流

  • 在快速力曲线的接触段中,在施加样品偏压下测量电流,以便在不损坏样品的情况下,对易碎的光伏材料进行成像

KPFM

    • 当样品被光照或加热时,对其局部电荷的变化(约50-100 nm)进行测量
    • 在光照或加热的情况下,找出局部功函数的变化
    • 对一些有n和p区域的材料中的局部域进行测量
    • 通过观察电势的变化,观测局部的光或流的变化

EFM

    • 在照明或加热后,观察样品的电容梯度变化
    • 在加热或光照条件下,对样品的电容梯度变化进行测量

CAFM

  • 量化地测量光电流和流
  • 在对样品进行光照情况下,对迁移率的变化进行测量

  • 利用快速力模式的电流成像,或快速力成像模式(FCM),对电荷中的域变化进行测量
  • 对样本中的光电流和流进行临时测量
  • 对钙钛矿材料中畴壁内的电流进行测量,以用于光伏应用

sMIM

  • 对多种线性和非线性材料进行表征,包括:导体、和绝缘体,可以深入观察PV、PT材料和器件
  • 根据材料的介电常数和导电性提供对比度
  • 根据在样品表面上测得的电容变化,将隐藏的结构可视化
  • 对绝缘光伏材料上的光电流和流进行测量

"Evidence of tunable macroscopic polarization in perovskite films using photo-Kelvin force microscopy," L. A. Renna, Y. Liu, T. P. Russell, M. Bag, and D. Venkataraman, Mater. Lett. 217, 308 (2018). https://doi.org/10.1016/j.matlet.2018.01.106

"Orientation of ferroelectric domains and disappearance upon heating methylammonium lead triiodide perovskite from tetragonal to cubic ," S. M. Vorpahl, R. Giridharagopal, G. E. Eperon, I. M. Hermes, S. A. L. Weber, and D. S. Ginger, ACS Appl. Energy Mater. 1, 1534 (2018). https://doi.org/10.1021/acsaem.7b00330

" performance perovskite solar cells fabricated under relative humidity conditions," J. Ciro, R. Betancur, S. Mesa, F. Jaramillo, Sol. Energy Mater Sol. Cells 163, 38 (2017). https://doi.org/10.1016/j.solmat.2017.01.004

"Real-time nanoscale open-circuit voltage dynamics of perovskite solar cells," J. L. Garrett, E. M. Tennyson, M. Hu, J. Huang, J. N. Munday, and M. S. Leite, Nano Lett. 17, 2554 (2017). https://doi.org/10.1021/acs.nanolett.7b00289

"Morphology controls the thermoelectric power factor of a doped semiconducting polymer," S. N. Patel, A. M. Glaudell, K. A. Peterson, E. M. Thomas, K. A. O'Hara, E. Lim, and Michael L. Chabinyc, Sci. Adv. 3, e1700434 (2017). https://doi.org/10.1126/sciadv.1700434

"Tailoring the energy landscape in quasi- halide perovskites enables efficient green-light emission," L. N. Quan, Y. Zhao, F. P. G. de Arquer, R. Sabatini, G. Walters, O. Voznyy, R. Comin, Y. Li, J. Z. Fan, H. Tan, J. Pan, M. Yuan, O. M. Bakr, Z. Lu, D. H. Kim, and E. H. Sargent, Nano Lett. 17, 3701 (2017). https://doi.org/10.1021/acs.nanolett.7b00976

"Mapping the photoresponse of CH3NH3PbI3 hybrid perovskite films at the nanoscale," Y. Kutes, Y. Zhou, J. L. Bosse, J. Steffes, N. P. Padture, and B. D. Huey, Nano Lett. 16, 3434 (2016). https://doi.org/10.1021/acs.nanolett.5b04157

"Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films," Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, and J. Huang, Energy Environ. Sci. 9, 1752 (2016). https://doi.org/10.1039/c6ee00413j

"-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer," J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, Adv. Mater. 27, 695 (2015). https://doi.org/10.1002/adma.201404189

"Polymer homo-tandem solar cells with best efficiency of 11.3%," H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, Adv. Mater. 27, 1767 (2015). https://doi.org/10.1002/adma.201404220

"Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell," V. W. Bergmann, S. A. L. Weber, F. J. Ramos, M. K. Nazeeruddin, M. Grätzel, D. Li, A. L. Domanski, I. Lieberwirth, S. Ahmad, and R. Berger, Nat. Commun. 5, 5001 (2014). https://doi.org/10.1038/ncomms6001

"Solvent‐polarity‐induced active layer morphology control in crystalline diketopyrrolopyrrole‐based band gap polymer photovoltaics," S. Ferdous, F. Liu, D. Wang, and T.P. Russell, Adv. Energy Mater. 4, 1300834 (2014). https://doi.org/10.1002/aenm.201300834

"Ternary blend polymer solar cells with enhanced power conversion efficiency," L. Lu, T. Xu, W. Chen, E. S. Landry, and L. Yu, Nat. 8, 716 (2014). https://doi.org/10.1038/nphoton.2014.172

"The role of solvent vapor annealing in highly efficient air-processed small molecule solar cells," K. Sun, Z. Xiao, E. Hanssen, M. F. G. Klein, H. H. Dam, M. Pfaff, D. Gerthsen, W. W. H. Wong, and D. J. Jones, J. Mater. Chem. A 2, 9048 (2014). https://doi.org/10.1039/c4Ta01125b

"Effects of molecular weight on microstructure and carrier in a semicrystalline poly(thieno)thiophene," A. Gasperini and K. Sivula, Macromolecules 46, 9349 (2013). https://doi.org/10.1021/ma402027v

"Understanding the morphology of PTB7:PCBM blends in organic photovoltaics," F. Liu, W. Zhao, J. R. Tumbleston, C. Wang, Y. Gu, D. Wang, A. L. Briseno, H. Ade, and T. P. Russell, Adv. Energy Mater. 4, 1301377 (2013). https://doi.org/10.1002/aenm.201301377

"Boron subphthalocyanine chloride as an electron acceptor for ‐voltage fullerene‐free organic photovoltaics," N. Beaumont, S. W. Cho, P. Sullivan, D. Newby, K. E. Smith, and T. Jones, Adv. Funct. Mater. 22, 561 (2012). https://doi.org/10.1002/adfm.201101782

"Improved performance of polymer bulk heterojunction solar cells through the reduction of separation via solvent additives," C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, Adv. Mater. 22, E63 (2010). https://doi.org/10.1002/adma.200903677

"Thienyl-substituted methanofullerene derivatives for organic photovoltaic cells," J. H. Choi, K.-I. Son, T. Kim, K. Kim, K. Ohkubo, and S. Fukuzumi, J. Mater. Chem. 20, 475 (2010). https://doi.org/10.1039/b916597e

"Nanocrystalline structure and thermoelectric properties of electrospun NaCo2O4 nanofibers," F. Ma, Y. Ou, Y. Yang, Y. Liu, S. Xie, J.-F. Li, G. Cao, R. Proksch, and J. Li, J. Phys. Chem. C 114, 22038 (2010). https://doi.org/10.1021/jp107488k

" band gap polymers based on benzo[1,2-b:4,5-b']dithiophene: Rational of polymers leads to photovoltaic performance," S. C. Price, A. C. Stuart, and W. You, Macromolecules 43, 4609 (2010). https://doi.org/10.1021/ma100051v

"Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties," Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, J. Am. Chem. Soc. 131, 7799 (2009). https://doi.org/10.1021/ja901545q

"Influence of pulsed laser deposition rate on the microstructure and thermoelectric properties of Ca3Co4O9 films," T. Sun, J. Ma, Q. Yan, Y. Huang, J. Wang, and H. Hng, J. Cryst. Growth 311, 4123 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.044

沪ICP备17031777号-1 公安机关备案号31010402003473