原子力显微镜
AFM配件
应用
联系我们
摩擦和其他损耗在某些应用中(从汽车发动机到髋关节置换)起着关键性的作用,但人们对这些现象仍然缺乏深入的了解。此外,随着临界尺寸的缩小,由于表面积与体积之比的增加,润摩性能会发生显著的变化。原子力显微镜拥有许多适合摩擦学实验(从原子级到微米级)的功能。目前的型号可以在广泛的正交力上测量非常小的侧向力,并且具有更高的力灵敏度和更低的噪音。扫描速度的提高可以在更大的范围内进行速度相关的研究。 凭借这些优势,再加上其他特性(例如:更高的空间分辨率、广泛的环境控制,以及多种设置和数据分析功能),原子力显微镜已成为纳米摩擦学领域的一个强有力的工具。
咨询AFM领域的专家"An - frictional combining FDTS SAMs with molybdenum disulfide," X. A. Cao, X. Gan, Y. Peng, Y. Wang, X. Zeng, H. Lang, J. Deng, and K. Zou, Nanoscale 10, 378 (2018). https://doi.org/10.1039/c7nr06471c
"Improvement of load bearing capacity of nanoscale superlow friction by synthesized fluorinated surfactant micelles," J. Li, Z. P. Dou, Y. Liu, J. Luo, and J. X. Xiao, ACS Appl. Nano Mater. 1, 953 (2018). https://doi.org/10.1021/acsanm.7b00367
"Robust microscale superlubricity under contact enabled by -coated microsphere," S. W. Liu, H. P. Wang, Q. Xu, T. B. Ma, G. Yu, C. Zhang, D. Geng, Z. Yu, S. Zhang, W. Wang, Y. Z. Hu, H. Wang, and J. Luo, Nat. Commun. 8, 14029 (2017). https://doi.org/10.1038/ncomms14029
"Nanomechanics of pH-responsive, drug-loaded, bilayered polymer grafts,” P. C. Nalam, H.-S. Lee, N. Bhatt, R. W. Carpick, D. M. Eckmann, and R. J. Composto, ACS Appl. Mater. Interfaces 9, 12936 (2017). https://doi.org/10.1021/acsami.6b14116
"A novel approach to decrease friction of ," X. Zeng, Y. Peng, and H. Lang, Carbon 118, 233 (2017). https://doi.org/10.1016/j.carbon.2017.03.042
"Static and kinetic friction characteristics of on different substrates," H.-J. Kim, G. H. Nguyen, D. L. C. Ky, D. K. Tran, K.-J. Jeon, and K.-H. Chung, Appl. Surf. Sci. 379, 452 (2016). https://doi.org/10.1016/j.apsusc.2016.04.097
" of structure on the tribology of ultrathin and oxide films," H. Chen and T. Filleter, 26, 135702 (2015). https://doi.org/10.1088/0957-4484/26/13/135702
"Interaction between selected MoS2 nanoparticles and ZDDP tribofilms," A. Tomala, B. Vengudusamy, M. Rodríguez Ripoll, A. N. Suarez, M. Remškar, and R. Rosentsveig, Tribol. Lett. 59, 26 (2015). https://doi.org/10.1007/s11249-015-0552-z
"Ionic liquids confined in hydrophilic nanocontacts: Structure and lubricity in the presence of water," R. M. Espinosa-Marzal, A. Arcifa, A. Rossi, and N. D. Spencer, J. Phys. Chem. C 118, 6491 (2014). https://doi.org/10.1021/jp5000123
"Friction force microscopy: a simple technique for identifying on rough substrates and mapping the orientation of grains on copper,” A. J. Marsden, M. Phillips, and N. R. Wilson, 24, 255704 (2013). https://doi.org/10.1088/0957-4484/24/25/255704
"Covalently attached organic monolayers onto silicon carbide from 1-alkynes: molecular structure and tribological properties," S. P. Pujari, L. Scheres, T. Weidner, J. E. Baio, M. A. Cohen Stuart, C. J. van Rijn, and H. Zuilhof, Langmuir 29, 4019 (2013). https://doi.org/10.1021/la400040e
"In situ quantitative study of nanoscale triboelectrification and patterning," Y. S. Zhou, Y. Liu, G. Zhu, Z. H. Lin, C. Pan, Q. Jing, and Z. L. Wang, Nano Lett. 13, 2771 (2013). https://doi.org/10.1021/nl401006x
"Lubrication with oil-compatible polymer brushes," R. M. Bielecki, E. M. Benetti, D. Kumar, and N. D. Spencer, Tribol. Lett. 45, 477 (2012). https://doi.org/10.1007/s11249-011-9903-6
"Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage," S. M. T. Chan, C. P. Neu, G. Duraine, K. Komvopoulos, and A. H. Reddi, Osteoarthr. Cartilage 18, 956 (2010). https://doi.org/10.1016/j.joca.2010.03.012
"Local nanoscale heating modulates single-asperity friction," C. Greiner, J. R. Felts, Z. Dai, W. P. King, and R. W. Carpick, Nano Lett. 10, 4640 (2010). https://doi.org/10.1021/nl102809k
"Friction force microscopy of lubricin and hyaluronic acid between hydrophobic and hydrophilic surfaces," D. P. Chang, N. I. Abu-Lail, J. M. Coles, F. Guilak, G. D. Jay, and S. Zauscher, Soft 5, 3438 (2009). https://doi.org/10.1039/b907155e
"In situ friction measurement on murine cartilage by atomic force microscopy," J. M. Coles, J. J. Blum, G. D. Jay, E. M. Darling, F. Guilak, and S. Zauscher, J. Biomech. 41, 541 (2008). https://doi.org/10.1016/j.jbiomech.2007.10.013
"Diamond and hard carbon films for microelectromechanical systems (MEMS)—a nanotribological study," I. S. Forbes and J. I. Wilson, Solid Films 420, 508 (2002). https://doi.org/10.1016/S0040-6090(02)00854-4