原子力显微镜
AFM配件
应用
联系我们
磁力显微镜(MFM)是原子力显微术领域的一个重要进步,它开启了亚微米磁畴研究的新时代。该技术特别是在磁数据存储行业占具重要地位,比如在介质和设备的成像方面(无论是磁记录比特数据的分析,还是读取/写入转换器的性能分析)。此外,还可用于材料和复合材料的基础研究(比如从纳米粒子和到铁蛋白)。近年来,科研人员开始将MFM与压电力显微镜(PFM)结合使用,以描述显示磁电耦合的多铁复合材料。含有磁致伸缩和压电元件的这些复合材料也可以使用一个可变的磁场模块(VFM),在面内磁场下通过操作PFM进行表征。推动这些新型材料研究的驱动力是:寻找更高密度的数据存储介质、高速、低功率的电子器件,以及一种新型的双电场和磁场可调信号处理装置。
咨询AFM领域的专家"Realization of ground state in artificial kagome ice via defect-driven writing," J. C. Gartside, D. M. Arroo, D. M. Burn, V. L. Bemmer, A. Moskalenko, L. F. Cohen, and W. R. Branford, Nat. Nanotechnol. 13, 53 (2018). https://doi.org/10.1038/s41565-017-0002-1
"Room uniaxial anisotropy induced by Fe-islands in the InSe van der Waals crystal," F. Moro, M. A. Bhuiyan, Z. R. Kudrynskyi, R. Puttock, O. Kazakova, O. Makarovsky, M. W. Fay, C. Parmenter, Z. D. Kovalyuk, A. J. Fielding, M. Kern, J. van Slageren, and A. Patanè, Adv. Sci. 5, 1800257 (2018). https://doi.org/10.1002/advs.201800257
" of Jahn-Teller distortion on the short range order in copper ferrite," M. H. Abdellatif, C. Innocenti, I. Liakos, A. Scarpellini, S. Marras, and M. Salerno, J. Magn. Magn. Mater. 424, 402 (2017). https://doi.org/10.1016/j.jmmm.2016.10.110
"Direct visualization of ‐‐induced magnetoelectric switching in multiferroic aurivillius films," A. Faraz, T. Maity, M. Schmidt, N. Deepak, S. Roy, M. E. Pemble, R. W. Whatmore, and L. Keeney, J. Am. Ceram. Soc. 100, 975 (2017). https://doi.org/10.1111/jace.14597
"Heat accumulation and all-optical switching by domain wall motion in Co/Pd superlattices," F. Hoveyda, E. Hohenstein, and S. Smadici, J. Phys.: Condens. 29, 225801 (2017). https://doi.org/10.1088/1361-648X/aa6c93
"Ferroelectric control of organic/ferromagnetic spinterface," S. Liang, H. Yang, H. Yang, B. Tao, A. Djeffal, M. Chshiev, W. Huang, X. Li, A. Ferri, R. Desfeux, and S. Mangin, Adv. Mater. 28, 10204 (2016). https://doi.org/10.1002/adma.201603638
"Observation of magnetic anomalies in one-step solvothermally synthesized nickel–cobalt ferrite nanoparticles," G. Datt, M. S. Bishwas, M. M. Rajac, and A. C. Abhyankar, Nanoscale 8, 5200 (2016). https://doi.org/10.1039/c5nr06791j
"G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics," L. Collins, A. Belianinov, R. Proksch, T. Zuo, Y. Zhang, P. K. Liaw, S. V. Kalinin, and S. Jesse, Appl. Phys. Lett. 108, 193103 (2016). https://doi.org/10.1063/1.4948601
"Magnetoelectric quasi-(0-3) nanocomposite heterostructures," Y. Li, Z. Wang, J. Yao, T. Yang, Z. Wang, J.-M. Hu, C. Chen, R. Sun, Z. Tian, J. Li, L.-Q. Chen, and D. Viehland, Nat. Commun. 6, 6680 (2015). https://doi.org/10.1038/ncomms7680
"Patterning magnetic regions in hydrogenated via e‐beam irradiation," W. K. Lee, K. E. Whitener, Jr., J. T. Robinson, and P. E. Sheehan, Adv. Mater. 27, 1774 (2015). https://doi.org/10.1002/adma.201404144
"100-nm-sized domain reversal by the magneto- in self-assembled BiFeO3/CoFe2O4 bilayer films," K. Sone, H. Naganuma, M. Ito, T. Miyazaki, T. Nakajima, and S. Okamura, Sci. Rep. 5, 9348 (2015). https://doi.org/10.1038/srep09348
" of magnetoelectric coupling in a self-assembled epitaxial nanocomposite via chemical interaction," W. I. Liang, Y. Liu, S. C. Liao, W. C. Wang, H. J. Liu, H. J. Lin, C. T. Chen, C. H. Lai, A. Borisevich, E. Arenholz, J. Li, and Y. H. Chu, J. Mater. Chem. C 2, 811 (2014). https://doi.org/10.1039/c3tc31987c
"--induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy," H. Miao, X. Zhou, S. Dong, H. Luo, and F. Li, Nanoscale 6, 8515 (2014). https://doi.org/10.1039/c4nr01910e
"Nanocomposite pattern-mediated interactions for localized deposition of nanomaterials," D. Fragouli, B. Torre, F. Villafiorita-Monteleone, A. Kostopoulou, G. Nanni, A. Falqui, A. Casu, A. Lappas, R. Cingolani, and A. Athanassiou, ACS Appl. Mater. Interfaces 5, 7253 (2013). https://doi.org/10.1021/am401600f
"Micromagnetic modeling of experimental hysteresis loops for heterogeneous electrodeposited cobalt films," M. P. Seymour, I. Wilding, B. Xu, J. I. Mercer, M. L. Plumer, K. M. Poduska, A. Yethiraj, and J. van Lierop, Appl. Phys. Lett. 102, 072403 (2013). https://doi.org/10.1063/1.4793209
"Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic -assisted piezoresponse force microscopy," G. Caruntu, A. Yourdkhani, M. Vopsaroiu, and G. Srinivasan, Nanoscale 4, 3218 (2012). https://doi.org/10.1039/c2nr00064d
"Local characterization of austenite and ferrite phases in duplex stainless steel using and nanoindentation," K. R. Gadelrab, G. Li, M. Chiesa, and T. Souier, J. Mater. Res. 27, 1573 (2012). https://doi.org/10.1557/jmr.2012.99
"Mutual ferromagnetic-ferroelectric coupling in multiferroic copper-doped ZnO," T. S. Herng, M. F. Wong, D. Qi, J. Yi, A. Kumar, A. Huang, F. C. Kartawidjaja, S. Smadici, P. Abbamonte, C. Sánchez-Hanke, S. Shannigrahi, J. M. Xue, J. Wang, Y. P. Feng, A. Rusydi, K. Zeng, and J. Ding, Adv. Mater. 23, 1635 (2011). https://doi.org/10.1002/adma.201004519
"Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling," S. Xie, F. Ma, Y. Liu, and J. Li, Nanoscale 3, 3152 (2011). https://doi.org/10.1039/c1nr10288e
"Enhanced multiferroic properties and domain structure of La-doped BiFeO3 films," F. Yan, T. J. Zhu, M. O. Lai, and L. Lu, Scripta Mater. 63, 780 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.013
"Uniaxial anisotropy in La0.7Sr0.3MnO3 films induced by multiferroic BiFeO3 with striped ferroelectric domains," L. You, C. Lu, P. Yang, G. Han, T. Wu, U. Luders, W. Prellier, K. Yao, L. Chen, and J. Wang, Adv. Mater. 22, 4964 (2010). https://doi.org/10.1002/adma.201001990
"Bimodal force microscopy: Separation of short and long range forces," J. W. Li, J. P. Cleveland, and R. Proksch, Appl. Phys. Lett. 94, 163118 (2009). https://doi.org/10.1063/1.3126521
"Ion beam sputtered nanostructured surfaces as templates for nanomagnet arrays," C. Teichert, J. J. de Miguel, and T. Bobek, J. Phys.: Condens. 21, 224025 (2009). https://doi/org/10.1088/0953-8984/21/22/224025
" force microscopy of superparamagnetic nanoparticles," S. Schreiber, M. Savla, D. V. Pelekhov, D. F. Iscru, C. Selcu, P. C. Hammel, and G. Agarwal, Small 4, 270 (2008). https://doi.org/10.1002/smll.200700116
"The band excitation method in scanning microscopy for rapid mapping of energy dissipation on the nanoscale," S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf, and B. J. Rodriguez, 18, 435503 (2007). https://doi.org/10.1088/0957-4484/18/43/435503