原子力显微镜
AFM配件
应用
联系我们
表面粗糙度测量是原子力显微镜的最常用功能之一。虽然这类表征非常重要,但当需要对多个样品或单个样品的多个位置进行重复测量时,操作过程会变得单调且耗时。为了改变这一现状,牛津仪器推出了新款Jupiter Discovery原子力显微镜和Ergo高级自动化软件,能够实现粗糙度数据的自动化采集。
本视频展示了晶元样品多点粗糙度测试的完整流程。在完成初始设置后,操作人员无需驻守在设备旁,Ergo软件会自动移动样品和探针,用优化的参数测量每个位置的表面粗糙度。Ergo高级自动化软件包不仅提高了工作效率,还确保了不同样品间测量方法的一致性,从而提升了数据的可重复性。
咨询AFM领域的专家"Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors," P. Buragohain, C. Richter, T. Schenk, H. Lu, T. Mikolajick, U. Schroeder, and A. Gruverman, Appl. Phys. Lett. 112, 222901 (2018). https://doi.org/10.1063/1.5030562
"Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 superionic conductor by spark plasma sintering for enhanced ionic conductivity," S. Duan, H. Jin, J. Yu, E. N. Esfahani, B. Yang, J. Liu, Y. Ren, Y. Chen, L. Lu, X. Tian, S. Hou, and J. Li, Nano Energy 51, 19 (2018). https://doi.org/10.1016/j.nanoen.2018.06.050
"Stamping of flexible, coplanar micro‐supercapacitors using MXene inks," C. Zhang, M. P. Kremer, A. Seral‐Ascaso, S.-H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, and V. Nicolosi, Adv. Func. Mater. 28, 1705506 (2018). https://doi.org/10.1002/adfm.201705506
"Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films," Y. Hao, X. Wang, K. Bi, J, Zhang, Y. Huang, L. Wu, P. Zhao, K. Xu, M. Lei, and L. Li, Nano Energy 31, 49 (2017). https://doi.org/10.1016/j.nanoen.2016.11.008
"Direct observation of the dynamics of single metal ions at the with solids in aqueous solutions," M. Ricci, W. Trewby, C. Cafolla, and K. Voïtchovsky, Sci. Rep. 7, 43234 (2017). https://doi.org/10.1038/srep43234
"Role of in enhancing the mechanical properties of TiO2/ heterostructures," C. Cao, S. Mukherjee, J. Liu, B. Wang, M. Amirmaleki, Z. Lu, J. Y. Howe, D. Perovic, X. Sun, C. V. Singh, Y. Sun, and T. Filleter, Nanoscale 9, 11678 (2017). https://doi.org/10.1039/c7nr03049e
"Nanoscale elastic changes in Ti3C2Tx (MXene) pseudocapacitive electrodes," J. Come, Y. Xie, M. Naguib, S. Jesse, S. V. Kalinin, Y. Gogotsi, P. R. C. Kent, and N. Balke, Adv. Energy Mater. 6, 1502290 (2016). https://doi.org/10.1002/aenm.201502290
"Influence of polar organic solvents in an ionic liquid containing lithium bis(fluorosulfonyl)amide: on the cation–anion interaction, lithium ion battery performance, and solid electrolyte interphase," A. Lahiri, G. Li, M. Olschewski, and F. Endres, ACS Appl. Mater. Interfaces 8, 34143 (2016). https://doi.org/10.1021/acsami.6b12751
" defects in double layers of ionic liquids at carbon interfaces," J. M. Black, M. B. Okatan, G. Feng, P. T. Cummings, S. V. Kalinin, and N. Balke, Nano Energy 15, 737 (2015). https://doi.org/10.1016/j.nanoen.2015.05.037
"Nanostructure of the ionic liquid-graphite Stern layer," A. Elbourne, S. McDonald, K. Voïchovsky, F. Endres, G. G. Warr, and R. Atkin, ACS Nano 9, 7608 (2015). https://doi.org/10.1021/acsnano.5b02921
"An in situ study of the evolution of roughness for zinc electrodeposition within an imidazolium based ionic liquid electrolyte," J. S. Keist, C. A. Orme, P. K. Wright, and J. W. Evans, Electrochim. Acta 152, 161 (2015). https://doi.org/10.1016/j.electacta.2014.11.091
" of properties on the performance of carbon plastic electrodes for flow battery applications," X. Sun, T. Souier, M. Chiesa, and A. Vassallo, Electrochim. Acta 148, 104 (2014). http://dx.doi.org/10.1016/j.electacta.2014.10.003
"Ferroelectric barium titanate nanocubes as capacitive building blocks for energy storage applications," S. S. Parizi, A. Mellinger, and G. Caruntu, ACS Appl. Mater. Interfaces 6, 17506 (2014). https://doi.org/10.1021/am502547h
"In situ tracking of the nanoscale expansion of porous carbon electrodes," T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, and N. Balke, Energy Environ. Sci. 6, 225 (2013). https://doi.org/10.1039/c2ee23707e
"Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite," J. M. Black, D. Walters, A. Labuda, G. Feng, P. C. Hillesheim, S. Dai, P. T. Cummings, S. V. Kalinin, R. Proksch, and N. Balke, Nano Lett. 13, 5954 (2013). https://doi.org/10.1021/nl4031083
"Miniature environmental chamber enabling in situ scanning microscopy within reactive environments," S. S. Nonnenmann and D. A. Bonnell, Rev. Sci. Instrum. 84, 073707 (2013). https://doi.org/10.1063/1.4813317
"Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by scanning microscopy techniques," J. Zhu, L. Lu, and K. Zeng, ACS Nano 7, 1666 (2013). https://doi.org/10.1021/nn305648j
"Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/ and Mn3O4 nanoparticle/ paper electrodes," H. Gao, F. Xiao, C. B. Ching, and H. Duan, ACS Appl. Mater. Interfaces 4, 7020 (2012). https://doi.org/10.1021/am302280b
"Lithographically patterned gold/manganese dioxide core/shell nanowires for capacity, rate, and cyclability hybrid electrical energy storage," W. Yan, J. Y. Kim, W. Xing, K. C. Donavan, T. Ayvazian, and R. M. Penner, Chem. Mater. 24, 2382 (2012). https://doi.org/10.1021/cm3011474
"Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution," S. Guo, S. Jesse, S. Kalnaus, N. Balke, C. Daniel, and S. V. Kalinin, J. Electrochem. Soc. 158, A982 (2011). https://doi.org/10.1149/1.3604759
"Measuring oxygen reduction/evolution reactions on the nanoscale," A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, Nat. Chem. 3, 707 (2011). https://doi.org/10.1038/nchem.1112
"In situ synthesis of Co3O4/ nanocomposite for lithium-ion batteries and supercapacitors with capacity and supercapacitance," B. Wang, Y. Wang, J. Park, H. Ahn, and G. Wang, J. Alloys Compd. 509, 7778 (2011). https://doi.org/10.1016/j.jallcom.2011.04.152
"The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions," I. Sirés, C. , C. P. de León, and F. Walsh, Electrochim. Acta 55, 2163 (2010). https://doi.org/10.1016/j.electacta.2009.11.051
"Mn3O4 nanoparticles embedded into nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors," B. Wang, J. Park, C. Wang, H. Ahn, and G. Wang, Electrochim. Acta 55, 6812 (2010). https://doi.org/10.1016/j.electacta.2010.05.086
公安机关备案号31010402003473